Inverse-Dynamics Particle Swarm Optimization for Spacecraft Minimum-Time Slew Maneuvers with Constraints

Dario Spiller, Fabio Curti, Luigi Ansalone


The problem of planning spacecraft minimum time reorientation maneuvers under boundaries and path constraints is addressed. Keep-out constraints for an optical sensor are considered and end-point constraints are imposed to obtain a rest-to-rest maneuver. The recently developed Inverse-dynamics Particle Swarm Optimization is improved and employed to solve the transcribed parameters problem. The numerical optimization technique is based on a differential flatness formulation of the dynamical system and the application of swarm intelligence to search for the solution. The flat outputs are chosen as the Modified Rodriguez Parameters which are approximated with B-spline curves. State and control are expressed as nonlinear functions of the flat outputs. It is established that the computation of minimum time maneuvers with the proposed technique leads to near optimal solutions, which fully satisfy all the boundaries and path constraints.


Particle Swarm; Differential Flatness; Inverse Dynamics; Optimization

Full Text:



K.D. Bilimoria and B. Wie. Time-optimal three-axis reorientation of rigid spacecraft. Journal of Guidance, Control, and Dynamics, 16 (3):446–452, 1993. DOI: 10.2514/3.21030.

F. Li and P. M. Bainum. Numerical approach for solving rigid spacecraft minimum time attitude maneuvers. Journal of Guidance, Control, Dynamics, 13(1):38–45, 1990. DOI: 10.2514/3.20515.

J. Li. Time-optimal three-axis reorientation of asymmetric rigid spacecraft via homotopic approach. Advances in space research, 57(10):2204–2217, 2016. DOI: 10.1016/j.asr.2016.02.016.

J. Li and X.-N. Xi. Time-optimal reorientation of the rigid spacecraft using a pseudospectral method integrated homotopic approach. Optimal Control Applications and Methods, 36(6):889–918, 2015.

DOI: 10.1002/oca.2145.

X. Bai and J. L. Junkins. New results for time-optimal three-axis reorientation of a rigid spacecraft. Journal of Guidance, Control, and Dynamics, 32 (4):1071–1076, 2009. DOI: 10.2514/1.43097.

C. R. McInnes. Large angle slew maneuvers with autonomous sun vector avoidance. Journal of Guidance, Control, and Dynamics, 17 (4):875–877, 1994. DOI: 10.2514/3.21283.

H. B. Hablani. Attitude commands avoiding bright objects and maintaining communication with ground station. Journal of Guidance, Control, and Dynamics, 22 (6):759–767, 1999. DOI: 10.2514/2.4469.

E. Frazzoli, M.A. Dahleh, E. Feron, and R. Kornfeld. A randomized attitude slew planning algorithm for autonomous spacecraft. In AIAA

Guidance, Navigation, and Control Conference and Exhibit, Montreal, Canada, Montreal, Quebec, Canada, 2001.

U. Lee and M. Mesbahi. Spacecraft reorientation in presence of attitude constraints via logarithmic barrier potentials. Proceedings of the American

Control Conference, pages 450 – 455, 2011. DOI: 10.1109/ACC.2011.5991284.

T. Lee, M. Leok, and N. H. McClamroch. Time optimal attitude control for a rigid body. In American Control Conference, 2008, pages 5210–5215. IEEE, 2008. DOI: 10.1109/ACC.2008.4587322.

X. S. Yang. Engineering Optimization - An Introduction with Metaheuristic Applications. John Wiley & Sons, New Jersey, 2010. ISBN: 978-0-470-58246-6.

P. Cui, W. Zhong, and H. Cui. Onboard spacecraft slew-planning by heuristic state-space search and optimization. Proceedings of the

International Conference on Mechatronics and Automation, pages 2115–2119, 2007. DOI: 10.1109/ICMA.2007.4303878.

L.-C. Lai, C.-C. Yang, and C.-J. Wu. Time-optimal maneuvering control of a rigid spacecraft. Acta Astronautica, 60(10):791–800, 2007. DOI:


R. G. Melton. Hybrid methods for determining time-optimal, constrained spacecraft reorientation maneuvers. Acta Astronautica, 94:294–301, 2014. DOI: 10.1016/j.actaastro.2013.05.007.

R. Kornfeld. On-board autonomous attitude maneuver planning for planetary spacecraft using genetic algorithms. AIAA Guidance, navigation,

and Control Conference and Exhibit, Guidance, Navigation, and Control and Co-located Conferences. DOI: 10.2514/6.2003-5784.

Y. S. X. Shijie. Spacecraft attitude maneuver planning based on particle swarm optimization. Journal of Beijing University of Aeronautics and Astronautics, 1:013, 2010.

D. J. Showalter and J. T. Black. Responsive theater maneuvers via particle swarm optimization. Journal of Spacecraft and Rockets, 51(6):1976–1985, 2014. DOI: 10.2514/1.A32989.

P. Huang, G. Liu, J. Yuan, and Y. Xu. Multiobjective optimal trajectory planning of space robot using particle swarm optimization. Advances in Neural Networks-ISNN 2008, pages 171–179, 2008. DOI: 10.1007/978-3-540-87734-9-20.

N. Xia, D. Han, G. Zhang, J. Jiang, and K. Vu. Study on attitude determination based on discrete particle swarm optimization. Science China Technological Sciences, 53(12):3397–3403, 2010. DOI:


D. Spiller, L. Ansalone, and F. Curti. Particle swarm optimization for time-optimal spacecraft reorientation with keep-out cones. Journal

of Guidance, Control, and Dynamics, 39(2):312–325, 2016. DOI: 10.2514/1.G001228.

M. Fliess, J. L´evine, P. Martin, and P. Rouchon. Flatness and defect of non-linear systems: introductory theory and examples. International

Journal of Control, 61:1327–1361, 2007. DOI: 10.1080/00207179508921959.

C. Louembet. Design of algorithms for satellite slew manoeuver by flatness and collocation. Proceedings of the 26th American Control Conference, pages 3168 – 3173, 2007. DOI: 10.1109/ACC.2007.4282459.

M. A. Patterson and A. V. Rao. GPOPS-II: A MATLAB software for solving multiple-phase optimal control problems using hp-adaptive gaus-

sian quadrature collocation methods and sparse nonlinear programming. ACM Transactions on Mathematical Software, 41(1):1–37, 2014. DOI:


F. Boldrini, D. Procopio, S. P. Airy, and L. Giulicchi. Miniaturised star tracker (aa-str) ready to fly. Proceedings of the 4S Symposium: Small Satellites, Systems and Services (ESA SP-571), 2004.

U. Schmidt, T. Fiksel, A. Kwiatkowski, B. Steinbach, I. abd Pradarutti, K. Michel, and E. Benzi. Autonomous star sensor astro aps: flight experi-

ence on alphasat. CEAS Space Journal, pages 1–10, 2015. DOI: 10.1007/s12567-014-0071-z.

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko. The Mathematical Theory of Optimal Processes. Interscience Publishers, John Wiley & Sons, 1965.

J. Kennedy and R. Eberhart. Particle swarm optimization. Proceedings of the IEEE International Conference on Neural Networks, 4:1942–

, 1995. DOI: 10.1109/ICNN.1995.488968.

M. Clerc. Particle Swarm Optimization. ISTE. Wiley, 2013. ISBN: 9781118613979.

K. E. Parsopoulos and M. N. Vrahatis. Parameter selection and adaptation in unified particle swarm optimization. Mathematical and

Computer Modelling, 46:198–213, 2007. DOI: 10.1016/j.mcm.2006.12.019.

R. Eberhart and J. Kennedy. A new optimizer using particle swarm theory. In Micro Machine and Human Science, 1995. MHS’95., Proceedings of the Sixth International Symposium on, pages 39–

IEEE, 1995. DOI: 10.1109/MHS.1995.494215.

C. De Boor. On calculating with b-splines. Journal of Approximation Theory, 6:50–62, 1972. DOI: 10.1016/0021-9045(72)90080-9.

C. De Boor. Splines as linear combinations of b-splines. a survey. Journal of Approximation Theory, 1986. DOI:

M. D. Shuster. A survey of attitude representations. The Journal of the Astronautical Sciences, 41 (4):439–517, 1993.

M. G. Cox. Practical spline approximation. In Topics in Numerical Analysis, pages 79–112. Springer, 1982. DOI: 10.1007/BFb0063201.

A. Saxena and B. Sahay. Computer Aided Engineering Design. Springer Netherlands, 2007. ISBN: 9781402038716.

S.S. Rao. Engineering Optimization: Theory and Practice. Wiley, 2009. ISBN: 9780470183526.



  • There are currently no refbacks.

Copyright © 2018. All Rights Reserved.